Feature Engineeringについて(年収幅ラベルの追加)

目的変数であるsalaryを年収幅でラベル化し、分類問題として解いた後に予測したラベルをテストデータに加えて学習させたのですが、予測値が全てinfになってしまいます。 このアイデアは何か問題があるのでしょうか? Notebookはgithubにあります。

https://github.com/Maekura/ML_Competiton/blob/master/ProbSpace/Salary_Prediction/lgbm_salary_labeling.ipynb

※年収幅ラベルとは
0~200万の人は0
200〜400万の人は1
400万〜600万の人は2
といった具合のラベルです。

Aws4 request&x amz signedheaders=host&x amz signature=1fac8ec193db121233cd085a785e8221351452277be72695294f8c724d31f60c
wakame

Githubのipynbファイルがそのまま開かなかったので、新しくGoogleColab環境に内容をコピペして動かしましたが問題なく動作しました。 https://colab.research.google.com/drive/1uG9jEks84di7HYI_Os7-5oPhaStxgPM5

Aws4 request&x amz signedheaders=host&x amz signature=022b3220fb3f0f2fc8869ef0f31d57c1b309099ef2652a5d40cdb263a423bdaa
RyoMaekura

確認して頂きありがとうございます。 再計算し直したところ、上手くいきました。

Favicon
new user
コメントするには 新規登録 もしくは ログイン が必要です。